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J. Phys. A: Math. Gen. 14 (1981) 1797-1813. Printed in Great Britain 

A renormalisation group approach to the entropy of a 
single polymer 

David J Elderfield 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 9 October 1980, in final form 14 January 1981 

Abstract. Employing the n + 0 field theoretic analogue we derive renormalisation group 
equations directly for the polymer system which may be solved to exhibit the scaling 
behaviour of the entropy S ( L )  of a single polymer of L links. An elegant parametric 
representation of the crossover from random flight to self-avoiding behaviour as the chain 
length L or expansion factor (Y = ( R 2 ) / ( R 2 ) s  increases is described, for which explicit 
representations are constructed to O(E')  in the E expansion. In the asymptotic domain 
(Y >> 1 or L >> 1 the expected scaling behaviour is observed. 

1. Introduction 

Following the pioneering work of Edwards (1966) it is widely believed that the entropy 
S(L)  of a polymer chain of L links may generally be parametrised-by the form 

S - A L - B  = ( y -  1) 1nL 

where y = y ( d )  is a universal function of the spatial dimension d and A, B independent 
of L summarise the short-range (non-universal) correlations. For self-avoiding or 
free-flight models this structure is adequately confirmed by direct enumeration of the 
polymer configurations on a lattice (see McKenzie 1976 for a review). More generally 
for a polymer obeying excluded-volume statistics (Edwards 1966) we would expect to 
observe a crossover from free-flight ( y  = 1) to self-avoiding ( y  = 6/d  + 2) behaviour as 
L increases and important long-range correlations develop, however, at present only 
the asymptotic behaviour is discussed in the literature (des Cloizeaux 1976). In this 
paper we develop a parametric description of the universal crossover scaling function 
m (E) which controls the behaviour of the subtracted entropy s 

S =  s -AL - B  = m(t). 

Here A,  B and LIE independent of L 
Employing the it + 0 analogue field theory 
directly for the polymer system we show 
parametric form 

control the non-universal aspects of S. 
to derive renormalisation group equations 
that s may be described in the compact 

where the parameter p may be expressed in terms of the renormalised length E 
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1798 D J Elderfield 

(proportional to L) by means of the relation 

or, more usefully, directly in terms of the expansion factor a = (R2) / (R2)8  which is 
directly measurable 

Here k ( p ) ,  f ( p )  may be constructed perturbatively in p in terms of the subtracted 
'entropy' S and expansion factor cx at the renormalisation group matching point ,f = 1, 
E = p  ( i f  E), whilst the functions @ ( x ) ,  v ( x ) ,  ~ ( x )  are known at least to O(x4) in the 
literature (see Brtzin et a1 1976) 

k ( p ) = S(  E ,  L") j = p , &  1 

a ( p  j = ( E ,  L")l =p,i= 

The non-universal functions A,  B are independent of the chain length and therefore of 
little intrinsic interest. 

In the asymptotic region I>> 1 or cx >> 1, we obtain the expected scaling structure 
with full control of the universal content of the constant term 

S(L) = s -AI,  - B  = y - I(ln L-  U (&))[I + o((L)-")] 

S ( a )  = s - AL - B  = - l[ln(a1/'2v-1' ) - w (&)I( 1 + o(L)-") 
or more usefully 

To second order in E we find that the universal amplitudes (Lor  a fixed) are of the form 

u ( & ) = q l + ( y ) &  E +O(E2)] 

2 
w (&) = - (1 - $+E + O(& ')). 

E 

More generally, by direct computation to O(E ') for a dimensionally regularised 
theory we obtain the explicit results 

1 (1-r) e E = S - AL. - B = - ln(1- p / u  *) - - (1 + -) [ 1 + (13 - 1 6 ~ )  + O(e3)  
w 3 E  2 8 

where the parameter p may be determined in terms of or a from the relations 

Here ,y is the Euler number: x = 0.5771 . . . . 
After a brief introduction to the excluded volume model and its field-theoretic 

analogue in the first section, we then proceed to derive and solve a series of exact 
renormalisation group equations which describe the scaling properties of the entropy in 
the second and final sections. 
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2. Entropy, excluded volume models and the field-theoretical analogue 

The excluded volume model is based on a simple phenomenological short-range 
repulsion between the monomers so that the energy E ( % )  of a polymer configuration 5%‘ 
may be written for a continuous chain in the form 

N N  

E(%)=&/ 4! 0 d s l  0 ds’8(r(s)-r(sr))  (2.1) 

where the vector r ( s )  0 < s < N parametrises the chain of L = NA2 ‘monomers’. Here A 
is representative of the inverse monomer spacing. In the context of the canonical 
ensemble approach we may therefore express the entropy S in the form 

S = - T r p  i%- l n p  =E(g)+ln(N(g))  (2.2) 

where the ensemble probability p(%) is given by the equation 

exp -E(  %) 
= Tr exp - E(%)  (2.3) 

and the functions E(g) ,  cN(g) are defined as follows: 

CN(g)=Trexp-E(%) i%- (2.4) 

cN(g)E(g) =% E(%)  exp-E(%) = -g- (Cdg) ) .  
a 

ag 
(2.5) 

Specialising to the continuous gaussian chain model of Edwards (1966) we may trivially 
rewrite (2.4), (2.5) in terms of an effective Hamiltonian H ( % )  

N N  H(%)=[ ds(-) ar(s )  d s l  dsr8(r(s)-r(sr))  
0 as 4! 0 0 

by means of the relation 

for all functions f(%). Here I [dr] denotes a functional integration. For the restricted 
ensemble r(N) - r (0)  = R one finds that 

CN(R, g ) =  Tr Q exp-PE(%)= I [dr]i3(r(N)-r(O)-R)exp-H(%) (2.7) 
r(N)-r(O)=R 

from which the entropy S may be derived via the equations (2.4), (2.5) and the obvious 
relation 

CNk) = 1 d R d  CN(R, g). (2.8) 

We should remark that the entropy S relative to the free (g  = 0) rather than the absolute 
entropy, which is infinite, will be computed. 
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The particular importance of (2.7) lies in the following isomorphism between CN(R)  
and a two-point field-theoretic Green function G2(R, t )  (see Elderfield 1978) 

N 

G2(R, t )  = 1 d N  exp[-(a,A2 + t )N]CN(R,  g )  (2.9) 
0 

where the Green function is defined by the relation 

G2(R, t ) =  lim J [d4141(R)41(0) exp-H(4)  

~ ( 4 ) =  J dxd a = l  f ( ~ ~ ~ ( x ) ) ' + ( t + a , ~ ~ ) i ! ~ ~ ~ x ) ~ ~ + ~ [  m = l  f ( 4 a ( ~ ) ) ' ]  . 

(2.10) 
n-0 

for the O ( n )  symmetric field-theoretic Hamiltonian H ( 4 )  
2 

(2.11) 

Here 4"(x)  is an n-component field for which the fluctuations are cut off at a 
momentum scale A reflecting the finite monomer size. The d4 coupling arises directly 
from the excluded volume'interaction g = u h "  > 0. Equation (2.9) relates the polymer 
limit L = N h 2  >> 1 to the approach of the ferromagnetic transition in the analogue field 
theory, for choosing a,(u) such that t = 0 locates the transition, it is well known that the 
susceptibility x is of the form 

(2.12) 
1 x E dR" G2(R, t, U )  = ;(@(u)/A2)'-'(l +O(t/A2)'w) 5 

which implies (des Cloizeaux 1976) that the entropy S (2.2) scales as follows 

L+(y- l ) [1nl+/u2a(1n  '"I) +(w)](l+O(L-w)).  (2.13) 
aZ4 Y - 1  

Here y, o > 0 are critical. exponents associated with the n + 0 Wilson-Fisher fixed point 
of the renormalisation group, whilst a,(u), 4 ( u )  are non-universal functions of the 
coupling u which depend strongly on the small length scale details of the underlying 
chain; hindered rotation etc. 

More generally outside of the asymptotic domain L >> 1 we would expect § to 
depend strongly on the dimensionless parameter z = u L ~ ' ~ .  Indeed if z << 1, pertur- 
bation theory is valid and we find directly that the entropy S exhibits random flight 
( y  = 1) behaviour. 

(2.14) 

We seek here to describe this crossover as L increases by employing the field-theoretic 
analogy to generate a set of renormalisation group equations which describe the scaling 
properties of S as a function of L, U .  Following the development of S from random 
flight to self-avoiding behaviour we shall find that the entropy may be written in the 
form 

s - A L - B = ~ ( E )  (2.15) 

where m ( E )  i s  universal up to a simple rescaling of the renormalised length E( m (0) = 
0). The non-universal structure of S appears only in the functions A,  R, E/L  which are 
determined by the short-range correlations in the model and are independent of L. It is 
important to observe that the non-universal parameter (proportional to L) will be a 



Entropy of a single polymer 1801 

common feature of all polymer functions. In particular the expansion factor a = 
(R2)/(R2)8 may be expressed as a universal function a ( Z )  of E (Elderfield 1980). In 
order to facilitate the comparison of S ( t )  with numerical studies it would be useful to 
eliminate in favour of a which is directly measurable so we shall simultaneously 
construct representations for S(1) and LY (E) .  

Our approach to the crossover functions m (L), cy (L) leads naturally to a parametric 
representation in terms of a parameter p for which we shall construct explicit expres- 
sions correct to O(E')  in the E expansion. We obtain the results 

S - AL - B = (2) ln(1 - p / u * )  -"( 1 +!) ( 1 + (13 - 1 6 ~ ) )  + O ( E ~ )  
3 E  2 2 

(2.16) 

where the parameter p may be determined in terms of E or a from the relations 

(2.17) 

(1 -p/u*)-"/ '"p = (1 - , / , * ) - - E / ~ W E ( ~ - ) E / ~ =  -L . (2.18) 

Here ,y is the Euler number: ,y = 0.5771 . . , . The functions A, B, L / L  are independent 
of L and strongly model dependent (non-universal) so we shall not construct explicit 
representations for them. In the asymptotic regime >> 1 (a  >> 1) we may identify as 
expected the critical exponents y, U exactly (to all orders in E )  as those apertaining to the 
n + 0 Wilson-Fisher fixed point discussed by many authors. An observation of 
independent interest is that the configuration energy E has the asymptotic form 

(2.19) 
2 

E =- (1 - y)( l  +O(E-")) 
E 

a result which does not follow trivially from the known scaling form (2.1 2). 

3. The renormalisation group in d = 4 - E  dimensions 

Employing the techniques of BrCzin et a1 (1976 BLZ) based on renormalised 
perturbation theory, we shall now investigate the scaling properties of the entropy S 
(2.2) and expansion factor a = (R2) / (R2) ,  via those of the irreducible field-theoretic 
function r (q )  which is related to the polymer functions CN(u) (2.7), (2.8), E (2.5) and 
the mean-square polymer size (R') through the function Z ( q )  = LL1(l/r(q)) as follows 
(cf (2.9)) 

cN(q, U )  = d R d  exp (iq 

(3.1) 

5 
=Z(q ,  N, U )  exp acL 

Here L;' represents the operation of Laplace inversion with respect to t (2.9) and 
L = NA2 characterises the number of links in the chain where A is representative of the 
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inverse monomer spacing. Following BLZ we shall construct a renormalised theory 
depending on a new length scale p << A for which we may display the scaling properties 
of C N ( ~ )  and whence E, (I?'), S in terms of a series of renormalisation group equations 
which are exact in the limit p << A. Analysing the structure of these equations we shall 
extract the critical exponents and display the form of crossover scaling functions in 
terms of a parametric representation. 

To derive the renormalisation group equations for a 44 field theory in d 6 4  
dimensions we construct a parallel theory described in terms of a set of renormalised 
vertex functions F N  ( N  legs) and new couplings E, T which are related to the bare or 
unrenormalised functions of variables U, t as follows 

If we now choose the function Z,, Z,, 2, such that the vertex functions are finite in the 
limit h+00 at fixed E, T the resulting theory scales exactly as a function of the 
renormalised variables E, 7, U. This procedure effectively factors out the non-universal 
features of the theory which depend on the short-range correlations by means of a 
rescaling 2, and the introduction of dressed (or renormalised variables) E, 7 in places of 
the bare variables U, t. To fix the renormalisation functions Z,, Z,, 2, we shall employ 
the technique of renormalising around the critical point ( a ,  chosen such that r2(q, t )  = 0 
at q 2 ,  t = 0). Introducing the vertex functions r N P ( p l  . . . pN,  41 . . . qP) containing P 
insertions of the operator d2(q) and the renormalised version. 

(N > 0 )  (3.5) 
P N / 2  NP F N p  = (z,/z,) z, r 

we may determine Z,, Z,, Z,, a, perturbatively in E by demanding that the following 
constraints be obeyed: 

F2(q, 7 ) l j = q 2 = o  = o (fixes a,) 

(fixes 2,) 

Here S p ( p )  stands for the point qi qj = 3(4Sij - 1). For this choice the functions f N P  

are finite (A + 00, E, 7 fixed) at the critical point T = 0 for all P, N > 0, whence the massive 
(7 # 0) functions F N ( 7 )  are also renormalised for they may be developed in a Taylor 
series as follows 

cf (3.5) and (3.4). N / 2  N =z, r ( P I . .  . PN, t, U, A) 
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Naturally before going to the limit of uniform t one has to perform partial summations 
on the massive propagator. 

The fundamental renormalisation group equation may now be derived directly from 
the above by observing (BLZ) that the bare functions rN(q) are certainly independent of 
the arbitrary length scale p so by implication 

a a 1 
acL v(G) 

[ p -+ @(E) z- (-- 2)T 

where F = r2 and the functions @(E), v ( E ) ,  q(E) are defined as follows 

(3.7) 

The expressions for @(E), v(E), q ( E )  enumerated above were computed for a dimen- 
sionally regularised 94 theory and are correct to O(E' )  in the E expansion (E  = O(E) ,  
d = 4-&). As usual a factor of Si' = 2 r(d/2) has been absorbed into the 
coupling E. The importance of (3.7) lies in the simple structure of @(E), v(E), q ( E )  for 
by construction they are independent of 7 and furthermore independent of p. 
Naturally, outside the dimensional regularisation scheme employed above there will be 
corrections of O ( p / A )  to (3.7), however in the critical domain q2,  t << A2 we may always 
choose p << A. Strictly the functions @(E), v(E), q ( E )  are universal only at the fixed 
point U *  defined as usual by @ ( U * )  = 0, however, this remanent dependence on the 
details of the regularisation and renormalisation procedure may always be absorbed by 
a further rescaling of the primary variables E, T so that (3.7) is indeed an adequate 
description of the universal scaling structure expected. 

In order to determine the scaling structure of C,, E, (R') from (3.7), we first rewrite 
(3.1), (3.2), (3.3) in terms of the fully renormalised function 2 = L7'(1/T(q)) = ZtZ of 
the renormalised length N =NZf/Z4 conjugate to 2. 

d - 1  d l 2  
7~ 

~ g ( q ,  E )  = exp (a,L)Z,(fi)Z(q, E, N) (3.9) 

a (R2) ( f i ,  E )  = -2d 7 In 2 ( q ,  E, N) 
as I q = O  

(3.10) 

By contrast the expression for E is rather complicated. Parametrising E in terms of the 
fully renormalised functions ??, P 

(3.11) 
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and non-universal amplitudes A,  B, C 

(3.12) 

leads to the following representation for the subtracted 'energy' E 

E = E i -  u - a C  L=AZ+BF+C. (3.13) 

Outside the dimensional regularisation scheme employed here (cf (3.7) et seq.) there 
will in general be corrections O ( p / A )  to (3.13) however, in the critical domain q 2 ,  t <i A* 
these non-universal terms can always be suppressed by choosing p c A (A finite). The 
non-universal functions A, B, C are intimately related to the renormalisation group 
functions P ( Z ) ,  v ( E ) ,  ~ ( i i )  (3.8) as follows 

( a: ) 

for in a dimensional regularisation scheme the functions Z,, Z,, 2, depend solely on the 
dimensionless variable U (AIp)' .  Of course, for other regularisations these relations 
may be modified by small terms O ( p / A )  which can again be ignored. 

We are thus led to focus our attention on the fully renormalised functions Z, F 
(3.11) and 2 = LF1(l/p(q)) which may be expected to satisfy renormalisation group 
equations similar to (3.7). To derive these equations the first step is to commute the 
operation of Laplace inversion through (3.7) to give the expression 

a a 1 a 1 2+q(E)].  (3.15) 
[ p 

+ p (E) + (v(ii)- 2 ) f i s I  In z = - -- [U($ 
Operating on this equation with E a/aE, fi a/aN and a/aq2 cf (3.9), (3.10), (3.11) we are 
then led to the complementary renormalisation group equations for x, F and (R2) /N  
collected below: 

(3.16) 

(3.17) 

(3.18) 
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Formally the equations (3.15)-(3.18) may be solved in order to display the scaling 
properties of x, F, 2 and (R’) by means of the method of characteristics. Defining 
functions G ( A ) ,  S(A), P(A) as follows 

P O )  = AP P U )  = CL (3.1.9) 

a(1) = n 

(3.20) 

(3.21) 

allows us to rewrite the renormalisation group equations in the following integrable 
forms 

1 -- d l n 2  - -(----2+7(E(A))) 
d l n h  v(E(A))  

d l n x  
d In A a n  

-- - 0  
d ln  
d In A 

d(R2)/N --2)(R’)/N(A), 1 
d In A = -( v (E (A) )  

Integrating equations (3.22)-(3.25) directly we obtain the solutions 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

If we now introduce these solutions into the fundamental equations (3.9), (3.13), (3.14) 
we find the expressions for CN, E which complement the result (3.29) for (R2). 

+[a,L+In Z(ii)]. (3.30) 

(3.31) 
E ( N ,  E,p)=[l?(N(A), i i ( A ) , A p ) ] - [ ( u - a a , ) L ] .  a 

au  

The expressions for In C,, (R’) presented above are exact within the context of an E 
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expansion (6 = O(E) )  in contrast to the result for E which will be modified by 
uninteresting non-universal corrections O ( p / A )  (A finite) if we do not employ a 
dimensional regularisation (see (3.13) et seq.). 

To exhibit the scaling structure of In CN, E, (R') we may now employ the freedom in 
the length scale A.  To fix A we make the choice i ( A )  = f l ( A ) ( A p ) ' =  1 for the renor- 
malised polymer length i so that the functions Z(A), B(A), (R')/fl(S(h) describe the 
physics of short polymers (i = 1) in the renormalised language and therefore may 
realistically be computed perturbatively in the interaction E(A). Observing now that 
the functions (R2)/N, 2, E are dimensionless we find that we may rewrite (3.29), (3.30), 
(3.31) in terms of p = G ( A )  as follows 

- - -  

(3.32) 

where the functions f ( p ) ,  h ( p ) ,  g ( p )  may be determined perturbatively in p from the 
structure of the theory at the matching point, i.e. 

(3.33) 

Strictly the functions f ,  g, h will depend also on the dimensionless parameter /L/A (A 
finite), however, the renormalisation programme employed here ensures that such 
terms are of O ( p / A )  and therefore may safely be suppressed in the critical domain q 2 ,  
N - l < p ' ~  A' (2, (R')/fl, E finite A + C O  at fixed fl, ii, p ) .  

We learn from (3.32), (3.33) that the parameter p = i i ( A )  is of fundamental 
importance for it alone controls the scaling behaviour of the polymer functions (ac, ii by 
construction independent of L).  Integrating the trajectory equations (3.19)-(3.21) for 
i ( A )  = 1 allows us to determine p = p ( L )  in the form 

exp-5' dx = exp- dx L = E  (L  = i ( 0 ) )  (3.34) 5 P(x)v(x) P (x)y(x) 

where E, proportional to the renormalised length i, is designed to absorb the non- 
universal effects of the crossover. The scaling form of the (or L) >> 1 limit arises 
directly from this equation for if P vanishes with positive derivative at some point U *  

then asymptotically p = i i ( A ) +  U * ,  Perturbatively we may locate a non-trivial fixed 
point U *  @'(U*) > 0) from the explicit representation for P ( E )  (3.8) (the Wilson-Fisher 
fixed point) so we may realistically solve (3.34) for the asymptotic form of p ( L )  by 
linearising about this point. Employing the linear form P ( E )  = w(i i  -U*)/. where 
v = .(U*) and o = .@(U*) are respectively the correlation length and crossover 
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exponents (BLZ) we find the relation 

(1 -p/U*)- ' l" = L(1+ O((L)-"))- (3.35) 

In contrast, for E<< 1 p + 0 and we recover the perturbative result valid near the Flory 
temperature 8; U - (1 - 8/T) .  Solving (3.34) we obtain the expression 

p = P 2 ( 1  + O(L"/") (3.36) 

where for T - 8 p = u L " / ~ [ ~  + 0(1- 8 / T ) ]  (finite) and may be identified with the 
standard crossover variable z = uL"" (cf (2.14)). To follow the development of the 
polymer functions as L increases from zero (random flight) to asymptotic (self-avoiding) 
values we may therefore usefully identify the point p = 0 with the Flory temperature by 
phenomenologically choosing L - L( 1 - 8/ T)2/" for all U rather than the conventional 
choice U - (1 - e / T )  associated with perturbation theory in the excluded volume 
parameter. We shall therefore rewrite (3.32), (3.34) in the normalised forms 

(3.37) 

(3.38) 

(3.39) 

where p = C ( h )  may be eliminated in terms of the crossover parameter L by means of 
(3.34) and the non-universal functions a,, b =In Zt(G)+Ju dx( l /v(x)  -2)/P(x) and 
a =(R2)  ( p  = 0)/2Nd i.e. (R2) , /2Nd are the subtractive and multiplicative renor- 
malisations required to isolate the universal scaling forms. 

In particular for the asymptotic domain L >> 1 we may employ the above linearisa- 
tion to obtain the expressions 

(Y - (R2) / (R2) ,  = p(&)(L)'"-'(l + o((L)-")) 
[In CN - (a,L + b)]g=0 = q ( ~ )  + ( y  - 1) In L(1 + o((L)-")) 

(3.40) 

(3.41) 

(3.42) 

where the amplitudes P ( E ) ,  q ( s ) ,  r ( E )  are universal up to a common rescaling of E, 

(3.43) 

(exact, see below). 
2 

r ( E )  = h ( u * )  =; (1 - y )  

Here y is the usual critical exponent associated with the susceptibility of the analogue 
field theory as expected ( y  = v ( 2  - 7)). The amplitude r ( E )  governing the asymptotic 
limit of the energy E (3.42) may in fact be derived directly in terms of the critical 
exponent y by employing the renormalisation equations. Observing from (3.13), (3.14) 
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and (3.15) that 8, p satisfy the following identities (up to corrections O(F/A)) at the 
matching point L' = f i ~  = 1 for the fixed point coupling E = U * (p  (U *) = 0) 

we find on eliminating P(u*, 1) that r (E)  =,??(U*, 1) = 2(1- Y ) / E  (cf (3.33)). 

(3.38), (3.39) in the parametric form 
The entropy S(z)  of a polymer chain may now be determined directly from (2.2), 

where the parameter p may be expressed in terms of 
chain) by means of the relation 

(proportional to the length of the 

dx 
exp- I, P(x)v(x) = L  

or more usefully directly in terms of the expansion factor a = ( R 2 ) / ( R 2 ) e  (3.37), (3.40) 
which is directly measurable. 

Here k ( p L  f(p) may be constructed perturbatively in p in terms of the subtracted 
'entropy' S and expansion factor a at the matching point L' = 1, E = p 

k ( p )  = $(E, L")I f i C P , &  1 = g ( p )  + h ( p )  cf (3.38), (3.39) 

f (p)"a(E,L") l r i -p ,& cf (3.37). 

The non-universal functions A = (U, - &/a In U ) ,  B = b (cf (3.38) et se'.) are indepen- 
dent of the chain length L and therefore of little interest. 

In the asymptotic domain L >> 1 or a >> 1 we obtain the expected structure cf (2.13) 
with full control of the universal content of the constant term (L  or a fixed) 

S(L) = S -AL  - B = ( y  - l)(ln k- u ( E ) ) [ ~  + O((L)-")] 

or 

) - w ( E  )](I+ w~)-")). 1 l ( 2 v -  1)  $ ( a ) = S - A L - B  =(y- l ) [ ln(a  

Here the amplitudes U(&), W ( E )  are universal up to the usual freedom of a rescaling of 
the crossover variable (k or a )  

U(&)=---=- '(') (1 + (?)& io(&')) (cf (3.43) and Appendix) 
E y - 1  E 

lnp(s )  2 
2v-1  E 

w ( E )  = U ( a )  + -- = - (1 - %& + O(& z)). 

Carrying through the programme outlined above we obtain to O(E ') the following 
expressions by direct computation for a dimensionally regularised theory (see the 
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Appendix for details) 

1 g =  S - A L  - B = (%) In(1 - p / u * )  -"( 1 - :) [ 1 +e (13 - 1 6 ~ )  O(E 3, 
3E 2 8 

where the parameter p may be determined in terms of or a from the relations 

(1 -p /u*)"-2" ' l"  [1 --iP(%-x)I 
(1 - p / u ) - E / 2 u p  = (1 - E / ~ * ) - E / ~ W & E / ~ =  - L  - E / 2  . 

Here ,y is the Euler number: x = 0.5771 . . . , 

4. Discussion 

Using the n + 0 analogue field theory we have shown by means of a series of direct 
renormalisation group equations that the entropy S ( L )  of a single polymer of length L 
should be discussed in terms of a universal subtracted 'entropy' 9 which as expected 
exhibits a crossover from free-flight to self-avoiding behaviour as the renormalised 
length L (proportional to L) or expansion factor a = ( R 2 ) / ( R 2 ) 8  increases 

g =  S -AL - B = m (E or a ) .  

Here A ,  B, L/L are strongly model dependent (non-universal) and independent of L 
and therefore of little interest. By solving the renormalisation group equations we have 
developed a compact parametric description of the uciversal crossover scaling function 
m ( p )  of the form 

where the parameter p may be expressed in terms of 
the relation 

(proportional to L )  by means of 

or more usefully directly in terms of the expansion factor (Y = ( R 2 ) / ( R 2 ) e  which is 
directly measurable 

Here k(p_), f ( p )  may be constructed perturbatively in p in terms of the subtracted 
entropy S and expansion factor a at the matching point L' = 1, E = p 

where (aL) and E are renormalised parameters defined in the text (i proportional 
to L).  For a dimensionally regularised scheme the functions p ( x ) ,  v ( x ) ,  ~ ( x )  are known 
perturbatively to at least O(x4) in the literature (see, for example, BLZ). 
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Carrying through the programme outlined above to 0 ( c 2 )  in the expansion (see the 
Appendix) we find the following explicit representation for a dimensionally regularised 
system 

- S = S -AL - B  = - (1 - Y) (13 - 1610) + O(E '). 
w 

The parameter p may be determined in terms of L or a from the relations 

a = (1 -p/u"2"-''l" [1 - i p ( % - x ) l  
(1 - p / u * ) - ' / 2 " p  = (1 - c / U * ) - E / 2 W L ' E / 2 E p / 2 *  

Here y, v, w are the usual critical exponents associated with the n + 0 Wilson-Fisher 
fixed point U * 

v = v(u*)  

Y = 4 2  - 77 1 
0 = @'(U*) 

(77 = 77(u*)) 

whilst x is the Euler number; x = 0.5771.. . . Naively our expressions are fully 
universal for they depend solely on the dimensionless crossover variable or a, 
however, direct computation (Elderfield 1980) shows that the perturbative term k ( p )  
depends on the regularisation scheme whence the observation of full universality (up to 
a rescaling of a or L) is not entirely beyond question. Naturally the critical exponents 
are, by contrast, fully universal (BLZ). 

In the asymptotic domain L >> 1 or a >> 1 we obtain the expected scaling structure 
(2.13) with full control of the universal content of the constant term (L or cr fixed) 

S ( L ) = S - A L - B  = ( - y - l ) ( l n ~ - v ( s ) ) ( l + O ( ( ~ ) - " ) )  

S ( a ) = S - A L . - B  =(y- l ) ( ln(a  
or 

)-W(4)(1+o((L)-w)). l / ( Z v - l )  

The amplitudes U(&), W ( E )  are universal up to the usual freedom of a rescaling of the 
crossover variable L or a. To second order in E we find the results 

U(&) = 1(1+ (?)& + O(&')) W ( & )  =- 2 (1 - - E  43 + O ( E 2 ) ) .  
E & 

A direct comparison of our expressions for S with numerical simulations is 
hampered by the dominant and non-universal linear term so we may usefully construct 
instead the universal combination 

by observing from (3.45) that p ( L )  (L proportional to L )  satisfies the relation 

Conventionally polymer physics is analysed in terms of a crossover variable Z - Le/' 



Entropy of a single polymer 1811 

which may be identified in terms of the crossover variable L discovered here by the 
choice 

z = p i 2  - L E i 2  

The description of the entropy S as a function of L is therefore, despite the imprac- 
tibility of a direct measurement of L, of fundamental interest for it is through that we 
may introduce a direct measure of the deviation from Flory temperature (random flight) 
conditions by the phenomenological approach 

z = LEi2 - (1 - e/ 
employed in the literature. On a practical level, however, the analysis of computer 
simulations directly in terms of the expansion factor cy which is directly measurable 
would seem to be more useful. 
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Appendix 1. 

For the interested reader we assemble here some notes on the computation for the 
scaling form of s, a to O(E’)  quoted in the text. The functions Z,, Z,, 2, (and p(E), 
q ( E ) ,  v(E) cf (3.4) and (3.8)) are available in the literature to at least O(E4) for the 
dimensionally regularised 44 system employed here (BLZ 1976) so in order to construct 
the scaling form of 3, cy we need only compute the trajectory integrals j p .  . . dx/p(x)  
(and construct perturbative representations valid at the renormalisation group match- 
ing point ((3.45) et seq.)). 

Al . l  The trajectory integrals 

To perform the integrals to O(E’), the essential step is to observe that the p function 
may be developed in the form (3.8) 

-- 1 - - L ( L + W ) ( l  +(-)(&E)) 
p(a)  E E ( u * - E )  

where w = $’(U*) for the O(eE) corrections may be properly ignored at this order since 
they contain contributions from the functions p(E) at O(E4) (E = O ( E ) ) .  With this 
philosophy we find, after some tedious algebra, the results 

1 2 
= - ln(1 - p / u * )  -- In p 

E 
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whence in particular we obtain the parametric equation (3.34) in the integrated form 

(1 - p / u * ) - " / 2 " p  = E ( 1 -  q u * ) - E / 2 W L " & / 2  (A41 

Here U, 7, w are the usual critical exponents associated with the n -$ 0 Wilson-Fisher 
fixed point U* (correct to O(E')).  

A1.2 f(p), k ( p )  
To construct f(p), k ( p )  to O(E') we only require (rather paradoxically) the perturbative 
expansions to order 6 (or one loop). Of primary interest are the functions 2 ( q ) ,  
aZ(q)/aq' taken at zero momentum (cf (3.33)) which are given to first order by the 
expansions 

and 

for 2, =1+O(ii2), Z ,  = l + O ( d ) ,  Z i = l + ( i i / 3 ~ ) ( l + ~ ~ ) + O ( i i ~ )  (BLZ) and the 
underlying bare vertex function r(q) is given by the expression 

U r(q) = q 2 + t + -  ( ~ / A ~ ~ - ' / ~ A ( ~ ) + o ( u ~ ) .  
3E 

HereA(E)/E = 5 dqd ( q 2 +  l)-' (Sd absorbed into U). Employing (3.33) leads directly to 
the result for f(p) required and the intermediate results h ( p ) ,  g(p)  

h(p)---p- lnZ(q)lq=o l a  = - ( p / 3 ~ ) ( l + $ ~ ~ ) + O ( p ~ )  
E aP a = p .  L= 1 

(x = 0.5771 . . . the Euler number). (A5) 
A slight complication occurs for h ( p )  for we see that h ( p )  - p / ~  whence we require the 
two loop or O(ii') term in this case. Fortunately however we know that asymptotically 
p + U* and h ( p )  + 2(1- y ) / ~  (3.43) so we may determine the O(p')  correction in terms 
of y, U*. 

h ( p ) = - L ( l  + - 2" x ) [ 1 + (1 3 - 1 6 ~ ) / 8 ] p  -I- O( p')) .  
3E 

Observiiigfinally that the function k ( p )  = s ( p )  is directly related to g(p),  h ( p )  ((3.45) 
seq.) we obtain the result 

k ( p )  = -E( 1 +:) (1 iP 8 (13 - 1 6 ~ )  + O ( p z ) ) .  
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Collecting the. results (A1)-(A6) inclusive, a simple substitution into (3.45) now 
yields the 0 ( c 2 )  scaling forms quoted. We should emphasise that the O(.s2) corrections 
to k ( p ) ;  f ( p )  may certainly be ignored for they are of the same magnitude as those 
arising from the O ( E ~ )  corrections to the trajectory integrations. 
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